Thursday, December 15, 2011
Is the U.S. wired Internet infrastructure weak? Revisited.
Wednesday, July 20, 2011
LED drivers--a $2 billion photonics market
OK, I said it. Electronics is photonics too. I'm stretching things a bit, since the suppliers of LED driver ICs are companies like Texas Instruments, Maxim, Analog Devices, and Macroblock who don't know or care about photons. They do know a lot about hand-crafted analog circuit designs and specialty fab processes that enable circuits tolerant to high-voltages--the kind that drive long LED strings in display backlights.
But good LED design optimizes the entire circuit for efficiency, reliability, LED uniformity, and many other specs. We call the circuit--minus the LEDs themselves--the driver. It may include zero, one, or multiple ICs for the purpose.
Opto people, like myself, tend to think that there is nothing interesting in the system apart from the quantum mechanics of electron-hole recombination and fancy MOCVD epitaxial growth. But when product designers take the electronics for granted, system performance is notoriously terrible, and that's bad for the whole LED industry. Likewise, electronics designers tend to take the LED for granted, but LEDs are requiring surprisingly novel and sophisticated circuits. The only way to achieve widespread LED lighting is if electronics designers innovate enough to meet cost and performance goals. Fortunately, there are those out there who can. Look for example at companies like Exclara, iWatt, Luxera, and Lynk Labs, to name a few.
The boundary between electronics and photonics is also fuzzy for lightwave transceivers. The laser and detector in a transceiver are typically very cheap, so much of the value is in the electronics: driver and receiver, clock recovery, and so on inside the module, not to mention all the higher level routing and control elsewhere on the board.
In imaging, it is even more dramatic. The detector array is sophisticated, but the image processing electronics takes it further, correcting optical limitations and even adjusting focus after the fact. The point is not that the electronics helps the optics, but that optical science actually resides in the electronics, often on the same chip as the sensor array.
I'll get back to the LED driver market again, but for now, remember: Electronics can be photonics too.
Friday, June 4, 2010
Time for customers to pony up
The conventional wisdom here in Silicon Valley is that venture-backed start-up companies form the engine of innovation for industries. The venture capitalists are nice enough to invest piles of money in component research, with the hope that they'll make even bigger piles for their investors, when they sell the start-up to a Cisco or an IBM, or they take it public.
Trouble is, I don't know how many times I've heard the systems integrators complain that they need new opto technology now. Not next year, not next month. Now! And these are the companies that are getting decent profit margins, unlike the components suppliers (don't make me name names, please). Well, if this stuff is so darned vital, the systems vendors should be willing to pay big bucks for it, right?
The VCs aren't investing in optical communication components because they don't see the return in it. If things get bad enough, the integrators will have to take on more risk. If that becomes too expensive, maybe they didn't really need it today, or even tomorrow. My bet is that they do need it, but were happy to let someone else pay for the development.
The wild card is whether some Asian government, such as Korea or China, will fill the gap in funding and gain a permanent advantage in the components market. If you think that the venture financing model is driven by a herd mentality or is too narrowly focused to be effective, then that may well happen. But if you think that, for all of its faults, the VC model is mostly rational and market driven, then it's just China's money getting wasted, to the benefit of the systems vendors.
Friday, April 9, 2010
Why Net Neutrality is above your job grade
Much is made about this kind of thing at the carrier level, since it impacts how they do their business. And what the carriers do—who wins and who loses—impacts the optical equipment vendors. And that passes on to the component vendors, who win or lose depending on their customers . So far, that’s all true.
But these kinds of decisions are really for policy wonks and legal nerds. I know, because I’m a recovering wonk myself. I once worked on telecom policy for Congress.
It’s not that technologists are above policy issues, or have nothing to contribute. Technologists are notoriously aloof in policy debates, but badly needed.
Rather, the neutrality debate is irrelevant to the optical networking community because it’s mostly decoupled from the day to day business of the network. There are so many other factors that are also very important. Think of the 50 states and the District of Columbia. Each has a regulatory agency. There are municipal agencies. Federal courts. The FCC. Congress. European countries. The European Commission. Japan. China. India. And a hundred other countries. Think of Google, iPhones, Facebook, Youtube. Think of refrigerators with IP addresses. (Then again, let’s leave that out.)
While policies get worked out, traffic just keeps on going up and up. And no one really has a good grasp just exactly how fast the traffic is growing, much less how much it will grow in the future. And even when big policy decisions are made, the consequences take years to work out. There will be more appeals, reactions by competitors, possibly legislation.
It’s important to take an interest in Net Neutrality as a citizen. It’s about whether you think broadband service should be a regulated utility, or if it should be a competitive service. And yes, the consequences do trickle down to the equipment and component vendors. But the ones who stand to gain the most from these debates? Lawyers and government affairs officers (also known as lobbyists). That’s a certainty.
Monday, September 28, 2009
FTTH in the U.S. vs. small countries--Part 2
My point in the earlier post was basically that small populations will fill out a wider distribution than the larger groups of which they are members. Small populations will fill the wings of the distribution, as well as the center. So, don't compare Andorra or Iceland FTTH data to that of the U.S. Compare the data to Palo Alto. Or rural Alaska. But not to the U.S.
Moreover, many countries have more centralized telecom policies than in the U.S., where policymaking is fragmented among states, municipalities, and multiple branches of the federal government. There are lots of rural coops in the U.S. with advanced telecom infrastructures that rival Andorra. And many that are way behind. But you don't know that from aggregated data.
Former colleague and optical fiber analyst extraordinaire Richard Mack noted a couple things that suggest that the U.S. is not behind, but arguably among the leaders in broadband infrastructure.
First, he says, figures of merit that look at broadband lines per population don't consider that a lot of broadband comes through the workplace in shared links other than FTTH or DSL. When a recent report redefined the figure of merit to include all types of use and other factors, the U.S. actually comes out on top.
The figures of merit also don't consider what is being done with the broadband. The U.S. is arguably the leader in innovation in applications like YouTube and Facebook, not to mention more substantive computing applications. This has to count for something. Such innovations aren't coming out of Andorra or Iceland (although tiny Estonia is home to the headquarters of Skype, thanks to the flattening effect of telecom).
I contributed to a Congressional study many years ago that pointed out that investment in telecom infrastructure has been shown to correlate strongly to economic development in poor areas. At some point, however, there are diminishing returns. So, contrary to cheerleading that "the global race for FTTH is on," economies should invest in the broadband (and not necessarily always FTTH) that it needs at that time. Too much investment and you have a bubble. Too little and you miss opportunities.
The point is this: when you see someone spinning FTTH or broadband data, ask hard questions about what it really says.
Tuesday, September 8, 2009
Why small countries will always lead in FTTH
The council announced that the top 10 countries with more than 10% penetration are: Sweden, Norway, Slovenia, Andorra, Denmark, Iceland, Lithuania, the Netherlands, Slovakia, and Finland. Note that the top country, Sweden, only has about 9 million people. Andorra has about 84,000.
Other lists of this type have put countries like Singapore, South Korea, and Iceland at the top of lists of countries with high broadband or FTTH penetration. In the next breath, a policy wonk somewhere will claim that this shows that the U.S. is falling behind these up-and-coming countries. For example, here's a policy report from 2006 doing just that. The U.S. trends toward the OECD average over time as smaller countries fill out the bell curve, but that's ignored. Rather, it's spun as a call for action.
What is never pointed out is that large populations--like the U.S. or the European Union--comprise a set of smaller, more diverse populations. A grade school student knows that, no matter how you define it, the average over the total is somewhere in the middle. Some of the smaller constituents have to end up in the wings. In the U.S., progressive rural coops and wealthier communities can lead the country in fiber penetration, while many tribal lands are far behind even in basic phone service.
Moreover, any student of politics knows that countries like Sweden, Singapore, and South Korea are more inclined to adopt centralized public policies than the U.S. In the U.S., the Administration, Congress, FCC, the courts, each of 50 states, and even municipalities make telecom policy. Some of the municipalities are like Andorra, to be sure, but the overall patchwork is far from centralized, thanks to things like the Bill of Rights and the general Wild West temperament of U.S. public policy.
Policies encouraging substantial investment in FTTH may be a great thing for the U.S. I'm of the view that it's a lot more complicated than that. But whatever your view, please don't say that the U.S. is falling behind because tiny Andorra has greater penetration than the U.S.